Skip to main content

Valence Shell Electron Pair (VSEPR) theory

Body

In his landmark paper, 'The Atom and the Molecule,' G.N. Lewis attempted to describe linkages between the atoms to understand the nature of covalent bonds.

He used dots to represent an atom’s valence electrons and argued that the atoms share their valence electrons to form one, two, or three bonds until they attain a stable octet electron configuration. An exception is the Hydrogen atom that attains a duplet configuration.  

So, two dots were used to represent two-electron covalent bonds or linkages between atoms, the structures popularly called Lewis structures. These bonding electrons are placed in between two atoms, whereas the nonbonding ones are placed above, below, or on the sides.

postulates of VSEPR theory

However, all the structures were drawn planar at right angles without depicting any shape or molecular geometry, which was not true.

A comparison of the Lewis structure with the actual structure of CH4 (methane) shows the difference.

Why VSEPR theory was proposed?

The first correlation between molecular geometry and valence electrons was presented by Nevil Sidgwick and Herbert Powell in 1940, which was further refined by Ronald Gillespie and Ronald Sydney Nyholm in 1957, known as the Valence shell electron pair repulsion (VSEPR) theory.

The premise of VSEPR theory considers shape as an after-effect of bond formation. The VSEPR theory uses electron repulsions occurring between the bonding and the lone pairs post bond formation as a guide to explain the bond angles, molecular geometry, and shape.

VSEPR theory

VSEPR theory credits bond angle to a central atom that forms the maximum number of bonds.

It assumes that once the central atom share electrons with other atoms and forms bonds, the electrons in the bonds start to repel each other. The repulsion is maximum if there are lone pair(s) on the central atom.

The central atom will adopt an arrangement that minimizes the electron pair repulsions by maximizing the distance between them, thereby creating bond angles.

When the bonds are fully spread, the repulsion is minimum at 180o and maximum when the bond angle is around 90o.

VSEPR theory, therefore, calculates electron pair arrangement, also known as electron-pair geometry, to group molecules.

The electron-pair geometry is different from the molecular structure since the molecular structure only considers the atom’s location and not the electrons.

For example, comparing CH4 with NH3, CH4 has four electron pairs around the central atom carbon and no lone pairs. Its electron pair geometry is 4, and its molecular structure is tetrahedral.

NH3 has 3 bond pairs and one lone pair; therefore, electron pair geometry is also four. However, the molecular structure of NH3 is not tetrahedral but trigonal pyramidal. The lone pair that is not included in the molecular structure influences the shape of NH3 by bending the bonds from the ideal tetrahedral.

How VSEPR explains bond angle distortion

VSEPR takes into account these repulsions and establishes an order as-

Lone pair-lone pair> lone pair-bond pair> bond pair-bond pair

It also considers that such electron-dense regions like lone pair occupy maximum space since it is associated with only one atom’s nuclei, unlike the bond pairs of electrons that share two nuclei. Therefore, lone pairs cause the greatest repulsions.

The electron density is also highest in triple-bonded atoms, followed by the double and the single bonds. The triple bonded atoms have 50% electrons present very close to the nuclei than in other regions, increasing the repulsive interactions. The double bonds have 33%, and single bonds have 25% electrons near the nucleus.

Therefore, ordering based on the space, the electrons occupy is-

lone pair> triple bond > double bond > single bond

For example, formaldehyde (H2CO) has high electron density at the central double-bonded carbon atom. This pushes the single bond pairs of the C-H bond, reducing the H-C-H angle to 118o and increasing the H-CO angle to 121o.

assumption of VSEPR theory

So, the VSEPR theory classifies molecules based on their electron pairs and explains deviations from their ideal bond angle due to the number of lone pairs present.

 

 

Sign Up for our Newsletters and Download the Sample Chapter -  Common Reaction Types 

A free sample of our course, Organic Chemistry Fundamentals 

Organic Chemistry Tutorials - CurlyArrows Premium

What is Organic Chemistry?

  • Introduction
  • Elements of a Chemical Reaction
  • Components of a Chemical Reaction

    Unlock Organic Chemistry

 

Atom

  • Size of an atom- The world belongs to the tiniest!
  • Power of Protons
  • Mass Number
  • Average Atomic Mass
  • Molecule and Molecular Mass
  • The Electrons- An Atom’s Reactive Component
  • Atomic Orbitals- s, p, d, f
  • Filing of Atomic Orbitals and Writing Electronic Configuration
  • Valence and Core Electrons- How to Determine

     Unlock Atom

 

Bonding In Atoms

  • Octet Rule - Introduction and Bonding
  • Limitations of Octet Rule
  • Ionic Bond- Introduction and Formation
  • Formation of Ionic Compound
  • Requirements for Ionic Bonding
  • Appearance and Nature of Ionic Compounds
  • Physical Properties of Ionic Solids- Conductance, Solubility, Melting Point, and Boiling Point
  • Covalent Bond - How it Forms
  • Covalent Bond - Why it Forms?
  • Covalent Bond - Bond Pair (Single, Double, Triple) and Lone Pair
  • Number of Covalent Bonds- Valency
  • Types of Covalent Bonds- Polar and Nonpolar
  • Metallic Bond - Introduction and Nature
  • Significance of Metallic Bonding
  • Impact of Metallic Bonding on the Physical Properties
  • Applications of Metallic Bonding
  • Difference Between Metallic and Ionic Bond

     Unlock Bonding in Atoms

 

Covalent Bond

  • Theories on Covalent Bond Formation
  • Valence Bond Theory- Introduction and Covalent Bond Formation
  • Valence Bond Theory- Types of Orbital Overlap Forming Covalent Bonds
  • Applications, Limitations, and Extensions of Valence Bond Theory
  • Hybridization- Introduction and Types
  • sp3 Hybridization of Carbon, Nitrogen, and Oxygen
  • sp2 Hybridization of Carbon, Carbocation, Nitrogen, and Oxygen
  • sp Hybridization of Carbon and Nitrogen
  • Shortcut to Determine Hybridization
  • The shape of sp hybrid orbital - Why is the lobe unequal?
  • VSEPR Theory- Introduction
  • Difference between Electron Pair Geometry and Molecular Structure
  • Finding Electron Pair Geometry and Related Shape
  • Predicting Electron-Pair Geometry and Molecular Structure Guideline
  • Predicting Electron pair geometry and Molecular structure - Examples
  • Finding Electron-Pair Geometry and Shape in Multicentre Molecules
  • Drawbacks of VSEPR Theory
  • Electron Wave Property, LCAO and MOT - Introduction
  • Linear Combination of Atomic Orbitals - Formation of Sigma and Pie bonds using MO Approach
  • The Energetics of Bonding and Antibonding Molecular orbitals
  • Conditions for the Valid Linear Combination of Atomic Orbitals  
  • Features of LCAO Theory
  • Finding the Electronic Configuration of Molecules using MO and Predicting Comparative Stability using Bond Order
  • Setting up the MO diagram for homonuclear diatomic molecules – Second Period Elements
  • Setting up the Molecular Orbital Diagram for Heteronuclear Diatomic Molecules
  • The Non-bonding Molecular Orbitals
  • Weakness of the Molecular Orbital Theory
  • Covalent bond Characteristics - Bond Length
  • Factors affecting Bond Length
  • How does Electron delocalization (Resonance) affect the Bond length?
  • Covalent bond Characteristics- Bond Angle
  • Factors affecting Bond Angle
  • Covalent bond Characteristics - Bond Order
  • How Bond Order Corresponds to the Bond Strength and Bond Length
  • Solved Examples of Bond Order Calculations
  • Covalent Bond Rotation
  • Covalent Bond Breakage
  • Covalent Bond Properties -Physical State, Melting and Boiling Points, Electrical Conductivity, Solubility, Isomerism, Non-ionic Reactions Rate, Crystal structure

     Unlock Covalent Bond

 

Electronic Displacement in a Covalent Bond

  • Electronegativity- Introduction
  • Factors Affecting Electronegativity- Atomic number, Atomic size, Shielding effect
  • Factors Affecting Electronegativity-s-orbitals, Oxidation state, Group electronegativity
  • Application of Electronegativity in Organic Chemistry
  • Physical Properties Affected by Electronegativity
  • Inductive effect - Introduction, Types, Classification, and Representation
  • Factors Affecting Inductive Effect- Electronegativity
  • Factors Affecting Inductive Effect- Bonding Order and Charge
  • Factors Affecting Inductive Effect- Bonding Position 
  • Application of Inductive Effect- Acidity Enhancement and Stabilization of the counter ion due to -I effect 
  • Application of Inductive Effect-Basicity enhancement and stabilization of the counter ion due to +I effect
  • Application of Inductive Effect-Stability of the Transition States
  • Application of Inductive Effect-Elevated Physical Properties of Polar Compounds
  • Is the Inductive Effect the same as Electronegativity?
  • Resonance - Introduction and Electron Delocalization 
  • Partial Double Bond Character and Resonance Hybrid
  • Resonance Energy
  • Significance of Planarity and Conjugation in Resonance
  • p-orbital Electron Delocalization in Resonance
  • Sigma Electron Delocalization (Hyperconjugation)
  • Significance of Hyperconjugation
  • Resonance Effect and Types
  • Structure Drawing Rules of Resonance (Includes Summary)
  • Application of Resonance
  • Introduction to Covalent Bond Polarity and Dipole Moment
  • Molecular Dipole Moment
  • Lone Pair in Molecular Dipole Moment
  • Applications of Dipole Moment
  • Formal Charges - Introduction and Basics
  • How to Calculate Formal Charges (With Solved Examples)
  • Difference between Formal charges and Oxidation State

   Unlock Electronic Displacements in a Covalent Bond

 

Common Types of Reactions

  • Classification of common reactions based on mechanisms
  • Addition Reactions
  • Elimination Reactions (E1, E2, E1cb)
  • Substitutions (SN1, SN2, SNAr, Electrophilic, Nucleophilic)
  • Decomposition
  • Rearrangement
  • Oxidation-Reduction

     Unlock Common Types of Reactions

 

Drawing Organic Structures

  • Introduction
  • Empirical Formula
  • How to Calculate Empirical Formula from percentage composition and atomic masses
  • Related Numerical Problems - Finding Empirical Formula (Solved)
  • Molecular Formula
  • Numerical Problems related to finding molecular formula  (Solved)
  • How to calculate molecular formula from empirical formula and molecular masses
  • Hill Nomenclature - The Empirical and Molecular Formula Writing Rules
  • Kekulé
  • Condensed
  • Skeletal or Bond line
  • Polygon formula
  • Lewis Structures- What are Lewis structures and How to Draw
  • Rules to Draw Lewis structures- With Solved Examples
  • Lewis structures- Solved Examples, Neutral molecules, Anions, and Cations
  • Limitation of Lewis structures
  • 3D structure representation- Dash and Wedge line
  • Molecular models for organic structure representation- Stick model, Ball-stick, and Space-filling
  • Newman Projection- Introduction and Importance
  • How to Draw Newman Projections from Bond-Line Formula (5 step-by-step solved examples on alkane, substituted alkane, alkene, ketone, and cycloalkane)
  • Drawing Newman Projections to the Bond line Formula (solved examples) 
  • Sawhorse Projection

     Unlock Drawing Organic Structures

 

Functional Groups in Organic Chemistry

  • What are functional groups? 
  • Chemical and Physical Properties affected by the Functional Groups
  • Identifying Functional Groups by name and structure
  • Functional Group Categorization- Exclusively Carbon-containing Functional Groups
  • Functional Group Categorization- Functional Groups with Carbon-Heteroatom Single Bond
  • Functional Group Categorization- Functional Groups with Carbon-Heteroatom Multiple Bonds
  • Rules for IUPAC nomenclature of Polyfunctional Compounds
  • Examples of polyfunctional compounds named according to the priority order
  • Examples of reactions wherein the functional group undergoes transformations

     Unlock Functional Groups in Organic Chemistry

 

Structural Isomerism

  • Introduction
  • Chain Isomerism
  • Position Isomerism
  • Functional Isomerism
  • Tautomerism
  • Metamerism
  • Ring-Chain Isomerism

     Unlock Structural Isomerism

 

Intermolecular Forces

  • Ion-Dipole Interactions-Introduction and Occurrence
  • Factors Affecting the Ion-Dipole Strength
  • Importance of Ion-Dipole Interactions
  • Ion-Induced Dipole - Introduction, Strength and Occurrence
  • Factors Affecting the Strength of Ion-Induced Dipole Interactions
  • Ion-Induced Dipole Interactions in Polar Molecules
  • Vander Waals Forces -Introduction
  • Examples of Vander Waals' forces
  • Vander Waals Debye (Polar-Nonpolar) Interactions
  • Factors affecting the Strength of Debye Forces
  • Vander Waals Keesom Force - Introduction, Occurrence and Strength
  • Vander Waals London Force - Introduction, Occurrence, And Importance
  • Factors Affecting the Strength of London Dispersion Forces- Atomic size and Shape
  • Introduction, Occurrence and Donor, Acceptors of Hydrogen Bond
  • Hydrogen bond Strength, Significance and Types
  • Factors Affecting Hydrogen Bond Strength
  • Impact of Hydrogen bonding on Physical Properties- Melting and boiling point, Solubility, and State
  • Calculation of the Number of Hydrogen Bonds and Hydrogen bond Detection

     Unlock Intermolecular Forces

 

Physical Properties

  • Physical Properties- Introduction, Role of Intermolecular Forces
  • Physical State Change-Melting Point
  • Role of Symmetry, Role of Carbon numbers, Role of Geometry
  • Physical State Change-Boiling Point
  • Intermolecular Forces and their Effect on the Boiling Point, Role of Molecular Weight (Size), Molecular Shape, Polarity
  • Boiling Point of Special Compounds- Amino acids, Carbohydrates, Fluoro compounds
  • Solubility in Water
  • Density
  • Preliminary Qualitative Analysis of some Organic Compounds | Intensive Physical Property Measurements

     Unlock Physical Properties

 

Fundamentals of Organic Reactions

  • Types of Arrows Used in Chemistry
  • Curved Arrows in Organic Chemistry- with Examples
  • Electrophiles - Introduction, Identification and Reaction
  • Formation and Classification of Electrophiles- Neutral and Charged 
  • Difference between Electrophiles and Lewis Acids
  • Nucleophiles - Identification and Role in a Reaction
  • Types of Nucleophiles- Lone Pair
  • Types of Nucleophiles- Pie Bond
  • Types of Nucleophiles- Sigma Bond
  • Periodic Trend and Order in Nucleophilicity
  • Introduction to Reactions Involving Nucleophiles
  • Nucleophile Reactions- Aliphatic Displacement type - SN1, SN2
  • Nucleophile Reactions- Acyl Displacement type
  • Nucleophile reactions- Aromatic Displacement type- Electrophilic, Nucleophilic
  • Addition Reactions- Electrophilic, Nucleophilic, and Acyl
  • Ambident Nucleophiles- Introduction and Formation 
  • Ambident Nucleophile - Nature of the Substrate
  • Ambident Nucleophile- Influence of the Positive Counter Ions
  • Ambident Nucleophile- Effect of Solvent 
  • Lone Pair - Introduction and Formation
  • Physical Properties Affected by the Lone Pair- Shape and Bond Angle
  • Physical Properties Affected by the Lone Pair- Hydrogen Bonding
  • Physical Properties Affected by the Lone Pair- Polarity and Dipole Moment
  • Chemical property affected by the Lone pair- Nucleophilicity
  • Leaving Group - Introduction and Nature
  • Good and Bad Leaving Group
  • Factors Determining Stability of the Leaving Groups- Electronegativity, Size, Resonance Stability
  • Using pKa as a Measure of Leaving Group Ability
  • Leaving Groups in Displacement Reactions
  • Leaving Groups in Elimination Reactions

     Unlock Fundamentals of Organic Reactions

 

Reactive Intermediates

  • Carbocation - Introduction, Nature, and Types
  • Formation of Carbocation
  • Stability of Carbocations- Inductive, Resonance, and Hyperconjugation
  • Other Structural Features Increasing Carbocation Stability
  • Structural Feature Decreasing Carbocation Stability
  • Fate of the Carbocation
  • General Carbocation Formation Reactions
  • Carbanion - Introduction, Nature, and Types
  • Formation of Carbanions
  • Carbanion Stabilization
  • Ease of Formation of Carbanion -Acidic proton
  • Fate of the Carbanion
  • Free Radical - Introduction and Types of Carbon-Centred Radicals
  • Structure of Carbon-Centred Free Radical
  • Formation of Radicals
  • Stability of the Carbon-Centred Radicals
  • Other Structural Feature Increasing Free Radical Stability
  • Comparing Free Radical Stability using Dissociation energies (D-H) 
  • Fate of Free Radicals
  • Common Reactions Involving Carbon-Free Radicals

     Unlock Reactive Intermediates

 

Stereoisomerism

  • Conformations in Organic Chemistry - An Introduction
  • How are Conformational Isomers Depicted
  • Open Chain and Closed Chain Conformations
  • Nomenclature related to sp3-sp3 and sp3-sp2 bond rotations
  • Conformational Analysis
  • Factors affecting the stability of conformers - Stabilizing Interactions |Hyperconjugation
  • Factors affecting the stability of conformers - Stabilizing Interactions | Intramolecular Hydrogen Bonding
  • Factors affecting the stability of conformers - Stabilizing Interactions | Dipole Minimizations
  • Factors affecting the stability of conformers - Destabilizing Interactions | Steric strain
  • Factors affecting the stability of conformers - Destabilizing Interactions | Torsional strain
  • Factors affecting the stability of conformers - Destabilizing Interactions | Angle strain
  • Importance of Conformational Analysis
  • Conformation in Compounds with Lone Pairs
  • Role of Solvents in Conformations
  • An Example of Conformation Dependent Reaction and Product Selectivity

     Unlock Stereoisomerism